

A competition to select the team to represent the UNITED KINGDOM

at the

XXXVIth INTERNATIONAL CHEMISTRY OLYMPIAD

ANSWER BOOKLET FOR MARKERS

Round I - 2004

* * * * *

Olympiad Round 12004 - Mark Scheme

1. This question is about redox reactions

(a) $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}$	reduction
(b) $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$	reduction
(c) $\mathrm{MnO}_{4}{ }^{2-} \rightarrow \mathrm{MnO}_{4}-+\mathrm{e}^{-}$	oxidation
(d) $2 \mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{e}^{-}$	oxidation
(e) $\mathrm{NO}_{3}{ }^{-}+2 \mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$	reduction
(f) $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	oxidation
(g) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$	reduction

> 1 mark for each correct reaction (=7)
> 2 marks if all oxidation and reduction correct
> Take off 1 mark for a single mistake.

Total 9
2. This question is about pollution and the Taj Mahal
(a) $\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
(b) i) $\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{CO}_{3}$
ii) CaSO_{4} is more soluble than CaCO_{3}.
(c) $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{2}+2 \mathrm{NH}_{3}$
(d) i) $\mathrm{CO}_{2}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{BaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$
ii) BaCO_{3} is even less soluble than CaCO_{3}.
(e) i) $2 \mathrm{BaCO}_{3}+2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{BaSO}_{4}+2 \mathrm{CO}_{2}$
ii) Slow down, because BaSO_{4} is least soluble of all/ The reaction consumes SO_{2}, thus less $\mathrm{H}_{2} \mathrm{SO}_{4}$ is formed.

Total 8
3. This question is about oxygen dissolved in water

> (a) i) $4 \mathrm{Mn}(\mathrm{OH})_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{Mn}(\mathrm{OH})_{3}$
> ii) $\mathrm{KI}+\mathrm{Mn}(\mathrm{OH})_{3} \rightarrow 1 / 2 \mathrm{I}_{2}+\mathrm{Mn}(\mathrm{OH})_{2}+\mathrm{KOH}$
(b) Starch
(c) $25.0 \mathrm{~cm}^{3}$ of $0.00100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ contains 2.50×10^{-5} moles

This reacts with $1.25 \times 10^{-5} \mathrm{~mol} \mathrm{I}_{2}$, which is formed from $2.50 \times 10^{-5} \mathrm{~mol}$ $\mathrm{Mn}(\mathrm{OH})_{3} .2 .50 \times 10^{-5} \mathrm{~mol} \mathrm{Mn}(\mathrm{OH})_{3}$ is formed from $6.25 \times 10^{-6} \mathrm{~mol} \mathrm{O}_{2}$. Mass $\mathrm{O}_{2}=6.25 \times 10^{-6} \times 32=0.200 \mathrm{mg}$ in $25.0 \mathrm{~cm}^{3}$. Therefore concentration of $\mathrm{O}_{2}=$ $8.00 \mathrm{mg} \mathrm{dm}^{-3}$
(d) The colourless gas is NO.

$$
\begin{equation*}
2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} \tag{1}
\end{equation*}
$$

(e) $\mathrm{NO}_{2}^{-}+\mathrm{I}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{NO}+1 / 2 \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
(f) $\mathrm{HNO}_{2}+\mathrm{HN}_{3} \rightarrow \mathrm{~N}_{2}+\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
or $2 \mathrm{HNO}_{2}+4 \mathrm{HN}_{3} \rightarrow 6 \mathrm{~N}_{2}+\mathrm{N}_{2} \mathrm{O}+3 \mathrm{H}_{2} \mathrm{O}$

4. This question is about Agent Orange

(a)

(b)

(1)
(1)
(c) 2,4,5-trichlorophenol
(d)
(e)

(1)
(1)
(f), (g)

h)

5. This question is about tin pest

(a) $? ? \mathrm{H} ?=-2.09 \mathrm{~kJ} \mathrm{~mol}^{-1}$
1 for value, 1 for units
(b) ? ? $? ~=44.1-51.4$

$$
\begin{equation*}
=-7.30 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad 1 \text { for value, } \mathbf{1} \text { for units } \tag{2}
\end{equation*}
$$

(c) $25 \mathrm{C}=298 \mathrm{~K}$

$$
\begin{align*}
? ? \mathrm{G} & =? ? \mathrm{H}-\mathrm{T} ? ? \mathrm{~S} \\
& =-2090-\left(298 \times^{-} 7.3\right) \\
& =85.4 \mathrm{~J} \mathrm{~mol}^{1} \tag{2}
\end{align*}
$$

1 mark for using 25 instead of $298=\mathbf{- 1 . 9 1} \mathrm{kJ} \mathrm{mol}^{-1}$
1 mark for using 2.09 instead of $2090=2.17 \mathbf{~ k J ~ m o l}^{-1}$
(d) White because ? ?G >0 at room temperature
(e) $\mathrm{T}=($? ? $\mathrm{H}-$?? G$) / ? \mathrm{~S}$?

$$
=(-2090-0) /^{-} 7.3
$$

$$
\begin{equation*}
=286 \mathrm{~K}(13 \mathrm{C}) \tag{1}
\end{equation*}
$$

(f) Volume of 1 g white tin $=1 / 7.31=0.137 \mathrm{~cm}^{3}$

Volume of 1 g grey tin $=1 / 5.75=0.174 \mathrm{~cm}^{3}$
Percentage volume increase

$$
\begin{equation*}
=[(0.174-0.137) / 0.137] \times 100=27.1 \% \tag{1}
\end{equation*}
$$

(g) White tin will have a great coordination number because it is denser so the atoms are more tightly packed/ there is a larger distance to its nearer neighbours which implies it has more neighbours

Total 10

6. This question is about a supernova

$$
\text { (a) } \begin{align*}
\mathrm{E} & =-\mathrm{R}_{\mathrm{H}} \mathrm{Z}^{2} / \mathrm{n}^{2} \\
& =-2.179 \times 10^{-18} \times 1 / 4 \\
& =-\mathbf{5 . 4 5} \times 10^{-19} \mathbf{J} \tag{1}
\end{align*}
$$

(b) $\mathrm{E}=-5.45 \times 10^{-19}-\left(-2.179 \times 10^{-18}\right)$

$$
\begin{equation*}
=1.63 \times 10^{-18} \mathrm{~J} \tag{1}
\end{equation*}
$$

(c) I.E. $=0-\left(-2.179 \times 10^{-18} \times 4 / 1\right)$

$$
\begin{equation*}
=8.72 \times 10^{-18} \mathrm{~J} \tag{1}
\end{equation*}
$$

(d) $\mathrm{f}=1.63 \times 10^{-18} / 6.626 \times 10^{-34}$

$$
\begin{equation*}
=2.47 \times 10^{15} \mathrm{~Hz} \tag{1}
\end{equation*}
$$

(e) $? \mathrm{E}=-\mathrm{R}_{\mathrm{H}} \mathrm{Z}^{2}\left(1 / \mathrm{n}_{2}{ }^{2}-1 / \mathrm{n}_{1}{ }^{2}\right)$

$$
=-2.179 \times 10^{-18} \times 64 \times(1 / 4-1)
$$

$$
=1.05 \times 10^{-16} \mathrm{~J}
$$

$$
\begin{align*}
\mathrm{f}=? \mathrm{E} / \mathrm{h} & =1.05 \times 10^{-16} / 6.626 \times 10^{-34} \\
& =\mathbf{1 . 5 8} \times \mathbf{1 0}^{\mathbf{1 7}} \mathbf{H z} \tag{3}
\end{align*}
$$

lose 1 mark for using $\mathrm{Z}=7$

$$
\left(\text { gives } ? \mathrm{E}=8.01 \times 10^{-17} \mathrm{~Hz}, \mathrm{f}=1.58 \times 10^{17} \mathrm{~Hz}\right)
$$

(f) $? \mathrm{E}=\mathrm{hf}=6.626 \times 10^{-34} \times 2.471 \times 10^{17}$

$$
\begin{equation*}
=1.64 \times 10^{-16} \mathrm{~Hz} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
? \mathrm{E} & =-\mathrm{R}_{\mathrm{H}} Z^{2}\left(1 / \mathrm{n}_{2}^{2}-1 / \mathrm{n}_{1}^{2}\right) \\
& =-R_{H} Z^{2}(-3 / 4) \\
\mathrm{Z} & =\mathrm{v}\left(4 / 3 \times ? \mathrm{E} / \mathrm{R}_{\mathrm{H}}\right) \\
= & \mathrm{v}\left(4 / 3 \times 1.63 \times 10^{-16} / 2.179 \times 10^{-18}\right) \\
& =10 \text { The element is Neon } \tag{1}
\end{align*}
$$

7. This question is about 'asparagus-pee'
(a) (iii) dehydrating agent
(1)
(b)
A

B

x

Y

Z1

Z2

(c)

Total 10

