39th INTERNATIONAL CHEMISTRY OLYMPIAD
 UK Round One - 2007

MARKSCHEME

Notes

Chemical equations may be given as sensible multiples of those given here.
State symbols do not need to be included in the chemical equations to obtain the mark(s).
Answers should be given to an appropriate number of significant figures although the marker should penalise this only once.

As a general rule, markers should aim to reward correct chemistry. Errors cannot be ignored but markers should ensure that candidates are not penalised for trivial errors.

Total mark: 73

Qu		Mark
(a)	$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}$	1
(b)	Mass of hydrogen $=80 \mathrm{t}$ Mass of oxygen $=638 \mathrm{t}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(c)	Volume of hydrogen $=1470 \mathrm{~m}^{3}$ Volume of oxygen $=538 \mathrm{~m}^{3}$ Total tank capacity $=2010 \mathrm{~m}^{3}$ 2 marks if total tank capacity correct. If incorrect, allow 1 mark for volume of H_{2} or O_{2} correct.	2
(d)	- $9769 \mathrm{~kJ} \mathrm{~mol}^{-1}$	1
(e)	$2.6 \mathrm{MJ}\left(2.6 \times 10^{9} \mathrm{~kJ}\right)$ Don't penalise if - sign present; allow 1 for correct working even if final answer incorrect.	2
		Marks $=8$

Question 2				Mark
(a)				1
(b)		Number of edges: 6		1
(c)	i)	$\mathrm{P}_{4}+3 \mathrm{O}_{2} \longrightarrow \mathrm{P}_{4} \mathrm{O}_{6}$	(allow mark for any correctly balanced equation giving $\mathrm{P}_{2} \mathrm{O}_{3}$ or $\mathrm{P}_{4} \mathrm{O}_{6}$)	1
(d)	ii)	$\mathrm{P}_{4}+5 \mathrm{O}_{2} \longrightarrow \mathrm{P}_{4} \mathrm{O}_{10}$	(allow mark for any correctly balanced equation giving $\mathrm{P}_{2} \mathrm{O}_{5}$ or $\mathrm{P}_{4} \mathrm{O}_{10}$)	1
		Structure of phosphorus(III) oxide:	(e) Structure of phosphorus (V) oxide:	$1+1$
(f)		 (stereochemistry not required)		1
(g)		$\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4} \quad$ (allow balanced equation from $\mathrm{P}_{2} \mathrm{O}_{5}$)		1
(h)		Oxidation state of molybdenum: $+6 \quad$ (sign not essential for mark)		1
(i)	(i)	Number of vertices: 12	(ii) Number of edges: 24	$1+1$
(j)	(i)	Number of Mo atoms: 12	(ii) Number of O atoms: 40 (allow 1 mark for 36 O atoms)	$1+2$
(k)		Overall charge of the molybdophosphate ion: - 3 Formula of ammonium molybdophosphate: $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{Mo}_{12} \mathrm{O}_{40} \mathrm{P}$ (allow variants e.g. $\mathrm{N}_{3} \mathrm{H}_{12} \mathrm{Mo}_{12} \mathrm{O}_{40} \mathrm{P}$)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
				Marks $=16$

Qu		Mark
(a)	C \& E	1
(b)	Concentration of phosphate: $7.5 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ (2 marks for fully correct answer, allow 1 mark for correct working if final answer incorrect)	2
(c)	Form of phosphate: $\mathrm{HPO}_{4}{ }^{2-}$	1
(d)	$6 \mathrm{HCl}+\mathrm{La}_{2}\left(\mathrm{CO}_{3}\right)_{3} \longrightarrow 2 \mathrm{LaCl}_{3}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ (2 marks if completely correct; 1 mark if incorrect equation but formula for $\mathrm{La}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ is correct)	2
(e)	$8.41 \times 10^{-14} \mathrm{~mol} \mathrm{dm}^{-3}$	1
(f)	LaPO_{4}	1
		Marks = 8

Question 4			Mark
(a)			$1+1$
(b)		Number of environments of hydrogen: $2 \quad$ Ratio: 1:2	$1+1$
(c)		Functional group: -OH (or alcohol, hydroxyl)	1
(d)		Number of hydrogen nuclei: 8	1
(e)	(i)	Formula for fragment: $\mathrm{CH}_{2} \mathrm{O}$	1
	(ii)	Formula for the X^{+}ion: $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{P}{ }^{\oplus}$ (allow correct variants)	1
	(iii)	m / z value: 159	1
(f)	(i)	 (ii) Structure for ion at $m / z=65$:	$1+1$
			Marks $=11$

(a)

\begin{tabular}{|c|c|c|}
\hline Que \& 5 continued \& Mark \\
\hline (c) \& \& 1
\[
1
\] \\
\hline (d) \& \begin{tabular}{l}
 \\
I
\end{tabular} \& 1

1

\hline \& \& 1

\hline (e) \& \& 1

\hline (f) \& M \& 1

\hline \& \&

\hline
\end{tabular}

(f)

Question 6			Mark
(a)		Bond angle: $110-120^{\circ}$ (actual angle: 117.4)	1 1
(b)	(i)	Oxidation state of chlorine in $\mathrm{ClO}_{2}:+4$ Oxidation state of chlorine in $\mathrm{HClO}_{3}:+5$ Oxidation state of chlorine in $\mathrm{HClO}_{4}:+7$ Award 2 marks for all 3 correct, 1 mark for 2 correct	2
	(ii)	$3 \mathrm{HClO}_{3} \longrightarrow 2 \mathrm{ClO}_{2}+\mathrm{HClO}_{4}+\mathrm{H}_{2} \mathrm{O}$	1
	(iii)	Structure: Bond angle: $109.5^{\circ}\left(109^{\circ} 28^{\prime}\right)$ (allow 109°)	1 1
(c)		$2 \mathrm{NaClO}_{3}+\mathrm{SO}_{2} \xrightarrow{\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)} 2 \mathrm{ClO}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \quad \text { Allow as ionic }$	1
(d)		Allow as ionic: $2 \mathrm{ClO}_{3}^{-}+(\mathrm{COOH})_{2}+2 \mathrm{H}^{+} \longrightarrow 2 \mathrm{ClO}_{2}+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	1
(e)	(i)	NaClO_{2}	1
	(ii)	$2 \mathrm{NaClO}_{2}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{ClO}_{2}+2 \mathrm{NaCl}$	1
			$\begin{aligned} & \text { Marks } \\ & =11 \end{aligned}$

